Effects, uptake, and fate of 2,4,6-trinitrotoluene aged in soil in plants and worms.

نویسندگان

  • Elly P H Best
  • Henry E Tatem
  • Kaaren N Geter
  • Melissa L Wells
  • Brian K Lane
چکیده

The present study was aimed at providing data to be used at predicting exposure-based effects of 2,4,6-trinitrotoluene (TNT) aged in soil on endpoint organisms representing two trophic levels. These data can be used to define criteria or reference values for environmental management and conducting specific risk assessment. Long-term exposure tests were conducted to evaluate sublethal toxicity and uptake of aged soil-based explosives, with TNT as the main contaminant. In these tests, plants were exposed for 55 d, and biomass and explosives residues were determined. Worms were exposed for 28 and 42 d, and biomass, number, and tissue residues were determined. Biomass of Lolium perenne significantly decreased with soil-TNT concentration, and an effective concentration causing a 20% decrease in biomass (EC20) for TNT metabolites of 3.75 mg/kg was calculated. The concentrations of TNT metabolites in shoots and roots were significantly related to concentrations in soil, as were concentrations of hexahydro-1,3,5-trinitro-1,3,5 triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The mean bioconcentration factors, indicating the potential of a chemical to accumulate in an organism, were 0.9 for TNT metabolites, 71.8 for RDX, and 12.2 for HMX in L. perenne shoots. Biomass of Eisenia fetida adults significantly decreased with soil-TNT concentration, and an EC20 for TNT of 3.70 mg/kg was calculated. The TNT, RDX, and HMX levels in E. fetida were below detection.

منابع مشابه

Bioremediation of 2,4,6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen.

Trees belonging to the genus Populus are often used for phytoremediation due to their deep root formation, fast growth and high transpiration rates. Here, we study the capacity of transgenic hybrid aspen (Populus tremula x tremuloides var. Etropole) which expresses the bacterial nitroreductase gene, pnrA, to tolerate and take-up greater amounts of the toxic and recalcitrant explosive, 2,4,6-tri...

متن کامل

Fate and stability of 14C-labeled 2,4,6-trinitrotoluene in contaminated soil following microbial bioremediation processes.

Biological treatment of 2,4,6-trinitrotoluene (TNT) in soil rarely results in complete mineralization of the parent compound. More often, the largest proportion of the TNT carbon is incorporated into the soil organic matrix. Therefore, we evaluated the stability of nonextractable residues from various bioremediation processes of 14C-TNT in soils. The extractable amounts of the residual radioact...

متن کامل

Potential of indigenous microbes as helping agents for

The aim of this study was to assess the effects of heavy metal tolerant soil microbes inoculation on growth and metal uptake of pearl millet (Pennisetum glaucum), couch grass (Triticum repens) and alfalfa (Medicago sativa) in a soil spiked (and subsequently aged) with increasing concentrations of Pb. A soil sample (soil 1) was spiked with increasing (0 to 1500 mg/kg) concentrations of Pb and in...

متن کامل

Effects, transfer, and fate of RDX from aged soil in plants and worms.

The objectives of this study were to provide data that can be used to predict exposure-based effects of RDX in aged soil on multiple endpoint organisms representing two trophic levels. These data can be used for defining criteria or reference values for environmental management and conducting specific risk assessment. Dose-response experiments formed the basis for the evaluation of toxic effect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Environmental toxicology and chemistry

دوره 27 12  شماره 

صفحات  -

تاریخ انتشار 2008